6=320/d^2

Simple and best practice solution for 6=320/d^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6=320/d^2 equation:



6=320/d^2
We move all terms to the left:
6-(320/d^2)=0
Domain of the equation: d^2)!=0
d!=0/1
d!=0
d∈R
We get rid of parentheses
-320/d^2+6=0
We multiply all the terms by the denominator
6*d^2-320=0
We add all the numbers together, and all the variables
6d^2-320=0
a = 6; b = 0; c = -320;
Δ = b2-4ac
Δ = 02-4·6·(-320)
Δ = 7680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7680}=\sqrt{256*30}=\sqrt{256}*\sqrt{30}=16\sqrt{30}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{30}}{2*6}=\frac{0-16\sqrt{30}}{12} =-\frac{16\sqrt{30}}{12} =-\frac{4\sqrt{30}}{3} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{30}}{2*6}=\frac{0+16\sqrt{30}}{12} =\frac{16\sqrt{30}}{12} =\frac{4\sqrt{30}}{3} $

See similar equations:

| 8(x-4)-5x=-24 | | 4(x-12)+19=89 | | 100-24x=16 | | -2C-3c=25-35 | | 0.2x-0.4=0.1+6 | | (x-2)^2=10-3x | | 42+(12x-4)=17x+18 | | 2=​3/n​​ | | 8+5(x-2)=16 | | 22-67=4x+5x | | 2x^2+11x+30.25=51.25 | | 1/4(7t-4)=t+4/8 | | 3y+2(y-2)=-25 | | -(4n-2)=14 | | 2x^2+11x+30.25=0 | | 19+6x=103 | | 1.5r`+15=2.25r | | -3/4w-5/8=3/2w+1/4 | | 6x−6=6x−6 | | 4x-35=11x | | 18=n−18 | | 7+2(y+1)÷3=8y÷5 | | 4+5x-1+7x+1=12 | | |2x-10|=-3x | | −12=4p | | 3+x=77 | | Y=4x^2-20x | | -65=x-6(2x-2) | | -7-2a=-7+2(a+4) | | z^2-6/7z+9/49=0 | | 1/2+7=3/4p+9 | | 6x+(x-26)=180 |

Equations solver categories